
Mathematical Methods in Reinsurance

Dr. Peter Antal, Swiss Re

May 15, 2009



Chapter 1

Fundamentals

1.1 The history and current role of reinsurance

1.1.1 Historical background

Whereas the first known insurance cover (in connection with commercial seafaring)

originated from the time before Christ, the oldest known treaty of a reinsurance

nature was concluded in 1370 in Genoa. However, at that time coinsurance was the

usual method of risk-sharing, i.e. insurers, having risks beyond their means to pay,

insured these by sharing the risk with other insurers.

The increased number of risks arising from industrialization during the last cen-

tury produced an ever greater need for reinsurance cover. The first professional

reinsurance company, Cologne Re, was founded following a devastating fire in Ham-

burg in 1842. The loss from this event amounted to 18 million marks, whereas the

local Hamburg Fire Fund only had 500,000 marks in reserve. This event assisted

the final breakthrough of the need to share the risks of whole portfolios amongst

several risk-carriers. By establishing professional reinsurance companies, the disad-

vantages of coinsurance - whereby a company could gain an insight into the business

of another company and misuse this information to gain an unfair advantage - were

eliminated. In addition, specialization allowed the development of new forms of

reinsurance and worldwide multi-line activity allowed a better distribution of the

risks. By providing better reinsurance protection, direct insurers were also able to
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offer their clients better conditions.

1.1.2 The current role of reinsurance

The question as to the role played by reinsurance has historically been answered

with the following list of factors:

• smoothing out fluctuations

• risk transfer

• financing growth

• substitute for equity capital

• optimization of taxes

• liquidity provisions

While these are all valid points, they do not explain when reinsurance makes

economic sense. For this, we need to look at reinsurance in a capital management

context:

We can define an insurance company’s underwriting risk by applying an ap-

propriate risk measure ρ to the company’s underwriting result R(the underwriting

result is the random variable defined as the company’s total premiums minus losses

and expenses). We will deal with the question of risk measures later in detail, let’s

think of ρ at the moment as the expected 99%-shortfall, i.e. the average of the 1%

worst outcomes when simulating the company’s possible results. ρ(R) can also be

interpreted as the risk based capital (RBC) needed by the insurance company: hold-

ing this capital allows to meet the company’s obligations versus the policyholders

as long as the actual claims do not lead to a result which is worse than ρ(R). By

buying reinsurance, the capital need for the primary insurance company is reduced

to ρ(R̃), where R̃ stands for the result after reinsurance. The capital relief is thus

K = ρ(R)− ρ(R̃) > 0 (1.1)
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At the same time, the reinsurance company needs additional capital K̃ for the

newly assumed risks. Reinsurance thus creates economic value if K > K̃.

Note that in practice the capital needed for an insurance company does not only

depend on internal risk considerations but also on regulatory and rating agency

constraints.

1.2 Contractual forms

1.2.1 General

A reinsurance treaty is a contractual agreement between a direct insurance company

(sometimes also called primary insurance company) and a reinsurance company

stipulating which share of (future) losses will be assumed by the reinsurance company

(RI) and the premium which the direct insurance company (DI) is required to pay

to the reinsurance company for this. The following points are characteristic:

• The duration of the treaty is fixed, in most cases for one year

• The treaty refers to either a well-defined DI’s portfolio (e.g. all fire policies in

Switzerland) or to a single risk (e.g. a production plant’s fire policy). The first

case is referred to as obligatory and the second case is referred to as facultative

reinsurance.

• The premiums the DI receives from his clients (the insureds), are called original

premiums. Losses which he is required to pay are correspondingly called orig-

inal losses. The reinsurance treaty divides these losses into a loss deductible

(borne by the DI) and a reinsurance loss (paid for by the RI). Thus:

original loss = loss deductible + reinsurance loss

Reinsurance treaties are usually divided into two categories: proportional and

non-proportional. We will adhere to this division and will now explain the structure

of the types of treaties which are in common use.
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1.2.2 Proportional reinsurance treaties

Quota share reinsurance

In so-called quota share reinsurance original premiums and original losses are divided

at a fixed ratio α between the direct insurer and the reinsurer. Thus:

Original loss: X0 Original premium Π0

RI loss: αX0 RI premium αΠ0

Loss deductible: (1− α)X0 Deductible premium (1− α)Π0

The original premiums are calculated in such a way that the direct insurer can

pay for the losses as well as costs incurred (administration, agents etc.). The rein-

surer participates in losses proportionally and in turn receives the corresponding

proportion of premiums. In this way the reinsurer would, however, always have a

better result than the direct insurer, since the reinsurer’s costs are lower. To truly

”share the fortunes” between direct insurer and reinsurer a share of the reinsurance

premium is repaid to the direct insurer. This amount is referred to as reinsurance

commission.

The transfer of money between insured, direct insurer and reinsurer can be repre-

sented as follows:

Client
Π0−→
←−
X0

DI
αΠ0−→
←−−−−−
αX0 + c

RI (c stands for commission)

Surplus reinsurance

Surplus reinsurance consists of a quota where the ratio α is not the same for all risks

in the portfolio. Here a deductible M is first of all determined (in practice this is

known as a retention line). Risks having a sum insured V smaller than M remain

entirely with the DI (i.e. α = 0). For other risks, premiums and losses are divided

between RI and DI in the ratio V −M : M . The quantity which we have designated

α in quota share is equal here to V−M
V . In the event of a total loss (X0 = V ) the DI

pays M and the RI V −M . The commission rate is determined in the same way as
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for a quota share treaty.

1.2.3 Non-proportional reinsurance treaties

Excess of loss

In this form of reinsurance the RI takes on a share of each loss in excess of a

previously agreed limit D , albeit only up to a limit C. The limit D is known as the

deductible or sometimes as priority, C stands for the cover. The original loss X0 is

therefore divided here into a loss deductible XDI and an RI loss XRI , whereby

XRI = (X0 −D)+ − (X0 − C −D)+

XDI = X0 −XRI

The notation for this type of treaty is

C xs D

(in words: C excess D). For this cover the RI requires a premium which is calculated

independently from the original premium. The area between D and D+C is often

referred to as the layer belonging to the cover C xs D. Since we will often be needing

the losses occurring in a layer as a function of the original loss, we will introduce

the following notation:

LD,C(X) := (X0 −D)+ − (X0 − C −D)+ (1.2)

There are two types of excess of loss treaty:

1. WXL (working excess of loss) This is a per risk cover whereby the direct insurer

retains a deductible of D in the case of every risk affected by a loss. This type

of treaty protects the direct insurer from individual major losses.

2. Cat XL (catastrophe excess of loss) This is a per event cover common in

property insurance, whereby the direct insurer retains a deductible D per

event (e.g. earthquake, storm, hail). This type of treaty is used if many risks

can be affected by a loss event at the same time.
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Stop-loss reinsurance

Stop-Loss is an excess of loss on the DI’s aggregate annual loss. In order to clarify

this, we will consider a portfolio where N losses have occurred in a given year, which

we denote by X1, . . . , XN . The total reinsured losses of the year then look as follows

in the case of an excess of loss or stop-loss cover (each having deductible D and cover

C):

SXL =
N∑
i=1

LD,C(Xi) (1.3)

SSL = LD,C

(∑N

i=1
Xi

)
(1.4)

.

Excess of loss with AD and AL (aggregate deductible and aggregate limit)

This is a combination of excess of loss and stop-loss. A stop-loss AL xs AD on

reinsured losses follows the excess of loss C xs D. The year’s reinsured loss is thus

LAD,AL(SXL) = (SXL −AD)+ − (SXL −AD −AL)+ (1.5)

The idea behind this structure is that the DI retains a large deductible for the ”first”

loss, (namely D+AD), and a small deductible (D) in the case of future losses. Often

AL, the total annual liability, is given as a multiple of C, the liability per loss. A

treaty is described as having k reinstatements, if AL = (k + 1)C.

Largest claims reinsurance

In this treaty the RI takes on the year’s largest (or the k highest) losses. It should,

however, be noted here that this type of treaty is hardly ever used in current practice.

For this reason we will not go into further detail.

6



Chapter 2

Some concepts of risk theory

2.1 Some distributions and their characteristics

In this lecture we are working with the so-called collective risk model, i.e. we consider

a portfolio of risks which can lead to certain losses and do not differentiate which

losses affect which risks (we will, however, be making an exception in exposure

rating, see 4.1.2 ).

With N we indicate the number of (original) losses in the portfolio under exam-

ination and with Xi (1 ≤ i ≤ N) the loss amount from the i-nth loss. Further, we

make the following assumptions:

1. N has a discrete distribution given by

P[N = k] = pk, (k ∈ N0)

2. The Xi (1 ≤ i ≤ N) are i.i.d with distribution FX and independent of N .

The annual total loss is then

S =
N∑
i=1

Xi (2.1)

First of all we will deal with the distributions used for modeling N and X.
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2.1.1 Distributions for modeling the number of losses

To describe the number of losses in a portfolio, one of the following three distribution

types is usually chosen:

1. Poisson distribution with parameter λ:

λ > 0

P [N = k] = e−λλk/k! , k = 0, 1, . . .

E[N ] = V ar[N ] = λ

2. Binomial distribution with parameters m, p

m > 0, 0 ≤ p ≤ 1

P [N = k] =
(
m

k

)
pk(1− p)m−k, 0 ≤ k ≤ m

E[N ] = mp, V ar[N ] = mp(1− p)

3. Negative binomial distribution with parameters a, p (Polya(a,β))

a > 0, 0 ≤ p ≤ 1

P [N = k] =
(
a+ k − 1

k

)
pa(1− p)k, k = 0, 1, . . .

E[N ] = a(1− p)/p, V ar[N ] = a(1− p)/p2

Whereas binomial and Poisson distribution are also common and presumably well

known outside actuarial mathematics, negative binomial distribution perhaps re-

quires further explanation. The name originates from the relationship:

(
a+ k − 1

k

)
pa(1− p)k =

(
−a
k

)
(p)a(−1 + p)k

A second common parametric representation of this distribution is obtained from

the substitution β = 1/p − 1 or p = 1
1+β . This parametric representation is often

termed Polya(a, β) distribution (in this case we have E[N ] = a · β). A third version
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(as used by Alois Gisler in his lectures) is using as parameters λ = E[N ] and a, i.e.

the probabilities are given by

Pa,λ[N = k] =
(
a+ k − 1

k

)
∗
(

a

a+ λ

)a( λ

a+ λ

)k
Exercise 1 Prove the following properties of the negative binomial distribution:

1. For λ ∈ <+ , Pa,λ[N = k]→ e−λλk/k! as a→∞.

2. For λ ∈ <+ , Q ∼ Γ(a, a) (Gamma Distribution) and N ∼Poisson(λ · Q) we

have: P [N = k] = Pa,λ[N = k].

Here we would like to discuss a characteristic of the above distributions important

for application to modeling the excess loss:

We consider those losses which exceed a given deductible D. The number of

these losses is

ND =
N∑
i=1

I{Xi>D} (2.2)

Let π = P [X > D]. Then:

Lemma 1 The following holds for the distributions of N and ND :

Distribution of N Distribution of ND

Poisson(λ) Poisson(λπ)

Binomial(m, p) Binomial(m,πp)

Neg. Binomial(a, p) Neg.Binomial(a, p
p+π(1−p))

Proof.

In the case of the Poisson distribution:

P [ND = k] =
∞∑
n=0

P [ND = k | N = n]e−λλn/n!

=
∞∑
n=k

(
n

k

)
πk(1− π)n−ke−λλn/n!

= e−λ(λπ)k/k!
∞∑
m=0

1
m!

(1− π)mλm

= e−λπ(λπ)k/k! �
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The most elegant way of showing the Lemma for the other two distributions is

by using the technique of generating functions. We will therefore be proving this in

a following section. At this point we would like to introduce a term used very often

in practice:

Definition 1 f(D) := E[ND] = E[N ] · P [X > D] is called the excess frequency at

deductible D.

2.1.2 Distributions for modeling the loss amount

There are many probability distributions which can be used for modeling single

loss amounts. Here, we intend to deal primarily with those which are significant in

practice but are not necessarily dealt with in standard works.

Pareto distribution

This distribution is commonly used in reinsurance. The distribution function and

the density are given by

FX(x) =

 1− ( xx0
)−α x > x0

0 else
(2.3)

fX(x) =

 αxα0x
−α−1 x > x0

0 else
(2.4)

The parameters x0 and α are both strictly positive. A minimum loss amount is

determined by x0. The parameter α defines the tail behavior of the distribution. If

the moments of the Pareto distribution are investigated it can be seen that the n-th

moment only exists for n < α. The following formulas apply for the expected value

and the variance:

E[X] = x0
α

α− 1
(α > 1) (2.5)

V ar[X] = x2
0

α

(α− 1)2(α− 2)
(α > 2) (2.6)
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There are various ways of parameterizing the Pareto distribution. The above is

particularly advantageous as it has been in practice shown that a typical value α

can be associated with a certain loss potential. The following rules of thumb have

been established:

Loss potential α

Earthquake/storm ≈ 1

Fire ≈ 2

Fire in industry ≈ 1.5

Motor liability ≈ 2.5

General liability ≈ 1.8

Occupational injury ≈ 2

It should, however, be noted that the effective loss amount distribution can only

be approximated using the Pareto distribution in a certain interval [x0,M ] , although

this is often sufficient for practical purposes.

A further noteworthy characteristic of the Pareto distribution is its behavior

in forming certain conditional distributions: If X is Pareto(x0, α)-distributed and

D ≥ x0, then

P [X > x|X > D] =
P [X > max(x,D)]

P [X > D]
=

 ( xD )−α x > D

1 else
(2.7)

i.e. we once again obtain a Pareto distribution with the same ”shape parameter” α.

In reinsurance one is often interested in the loss amount in a layer with deductible

D and cover C. In this case all moments exist since the underlying random variable

is bounded above (by the constant C). If X0 is Pareto(x0, α)-distributed and XRV =

LD,C(X0), then with R = D + C:
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E[XRV ] =


x0 ln(1 + C

D ) α = 1

x0(x0
D −

x0
R ) α = 2

x0
α−1

(
(x0
D )α−1 − (x0

R )α−1
)

else

(2.8)

V ar[XRV ] =



2x0(C −D ln(1 + C
D )) α = 1

2x2
0(ln(1 + C

D )− (1− D
R )) α = 2

2x0

[
R

1−α
(
(x0
D )α−1 − (x0

R )α−1
)

+

x0
α−1

(
(x0
D )α−2 − (x0

R )α−2
)]

else

(2.9)

The MBBEFD distribution

This is a class of two-parameter distributions introduced by Bernegger[2] which

has proved useful particularly in modeling degrees of loss in fire insurance. The

name MBBEFD stands for Maxwell-Boltzmann-Bose-Einstein-Fermi-Dirac, which is

intended to suggest the similarity with the corresponding functions from statistical

mechanics. The distribution has two parameters b and g ( b ≥ 0 and g > 1) and the

support [0, 1]. The distribution function is given by

F (x) =



0 x ≤ 0 or g = 1 or b = 0

1 x ≥ 1

1− 1
1+(g−1)x x ∈ (0, 1) and g > 1 and b = 1

1− bx x ∈ (0, 1) and g > 1 and bg = 1

1− 1−b
(g−1)b1−x + (1−gb) else

As already mentioned, this distribution is particularly suitable for describing degrees

of loss, i.e. describing the loss amounts measured in terms of the maximum possible

loss (MPL) or the sum insured. The degree of loss 1 thus corresponds to a total loss.

A positive total loss probability P [X = 1] = 1/g is characteristic of the MBBEFD

distribution. There is also a variation of this distribution defined on the interval

[0,∞). We will, however, not be dealing with this here. Interested readers should

refer to [2]. The expected value of the MBBEFD distribution is given by
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E[X] =



1 g = 1 or b = 0
ln(g)
g−1 g > 1 and b = 1
b−1
ln(b) g > 1 and bg = 1

ln(gb)(1−b)
ln(b)(1−gb) else

In practice the total loss probability P [X = 1] = p0 and the expected value E[X] = µ

are given and it is necessary to find the relevant distribution from the MBBEFD

class. It can always be said that:

g =
1
p0

In defining b, once again various cases must be differentiated:

b(µ, g) =



0 if µ = 1

1/g if µ = 1
g2 ln g

1 if µ = ln g
g−1

∞ if µ = 1
g

In the general case of (0 < b < ∞ and b 6= 1/g and b 6= 1) b must be determined

numerically from the equation

µ =
ln(gb)(1− b)
ln(b)(1− gb)

(2.10)

The Benktander distribution

This involves a distribution introduced by Benktander [3], the asymptotic behavior

of which lies between the exponential distribution and the Pareto distribution. It is

used above all in liability business. The distribution function is given by

FX(x) =

 1− ( xx0
)b−1e−(a/b)(xb−xb0) if x > x0

0 if x ≤ x0

(2.11)
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and for the parameters a, b, x0 we have:

0 < a

0 < b ≤ 1

0 < x0

In the case b = 0 we have a Pareto distribution with α = a + 1, b = 1 gives

an exponential distribution with parameter a shifted by x0. Parameter b is scale

invariant (currency exchange rate, inflation, etc.), but not, however, parameter a. If

we let:

X ′ = γX

x′0 = γx0

then X ′ once again has a distribution of the same type with parameters a′, b′, where

a′ =
a

γb

b′ = b

In motor liability business selecting b ≈ 0.5 has proved useful. The choice of a

depends on the unit and the currency in which the loss amount is measured due to

the above scaling characteristic.

Generalized Pareto Distribution (GPD)

This distribution appears in connection with results from the extreme value theory.

It involves a two-parameter distribution with the distribution function

Gξ,σ(x) =

 1− (1 + ξx/σ)−1/ξ if ξ 6= 0

1− e−x/σ if ξ = 0

whereby σ > 0 and ξ ∈ R . The support is [0,∞) if ξ > 0 or [0,−σ/ξ] if ξ < 0.

In the case of ξ = 0 we have an exponential distribution. This distribution is often

suitable for describing loss amounts in high-excess layers. In order to understand

this more fully we need some results from the extreme value theory:
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Definition 2 Definition 3 Let F be a distribution and Fn the distribution be-

longing to the successive maxima, i.e. if (Xi)i=1,2,... is a sequence of i.i.d random

variables with distribution F , then Fn is the distribution of Mn = max(X1, . . . , Xn).

We say that F is in the domain of attraction of an extreme value distribution, if

there are successive numbers an > 0 and bn, so that

Fn(anx+ bn)→ H(x)

for a non degenerated distribution H.

A famous result from the extreme value theory (Fischer-Tippett, 1928) says that

there are only three candidates for the distribution H, namely the Fréchet, the Gum-

bel and the Weibull distribution. The loss distributions of relevance for actuarial

mathematics are either in the domain of attraction of the Fréchet distribution (e.g.

if F = Pareto or loggamma) or that of the Gumbel distribution (F = normal, ex-

ponential, gamma, lognormal). The greatest problem in the applicability of these

results in practice is the fact that if F is a distribution with finite support ( in the

real world the highest possible insured loss is surely finite), then the assumption of

the statement is not fulfilled, since Mn then converges towards the right endpoint

of the distribution and H is thus degenerated.

If the real loss distributions are nevertheless to be described by means of dis-

tribution functions with infinite support (there is little choice available), then the

link with the general Pareto distribution can be reproduced using the following

statement:

Theorem 1 (Pickands-Balkema-deHaan, 1974)

Let F be a loss distribution with infinite support and FD the distribution of the

excess loss above the deductible D, i.e.

FD(x) = P [X −D ≤ x | X > D]

Then there is a positive, measurable function σ(D) and ξ ∈ R, so that

lim
D→∞

sup
x≥0

∣∣FD(x)−Gξ,σ(D)(x)
∣∣ = 0

if and only if F lies in the domain of attraction of an extreme value distribution.
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This statement gives us a theoretical basis for sensibly modeling the loss amount

in high-excess layers by means of the generalized Pareto distribution.

Generalized Beta Distribution

This is a four parameter distribution that is rarely used in his general form, but it

is very convenient for the common parametrization of a large class of distributions.

In fact, many frequently used severity distributions turn out to be a special case of

the generalized beta distribution. The distribution function is given by

Fα,β,ω,ρ(x) =

 B(α, β, xρ

xρ+ω ) if x > 0

0 else

where

B(α, β, y) =
Γ(α+ β)

y∫
0

uβ−1(u− 1)α−1du

Γ(α)Γ(β)

is the incomplete Beta function and the parameters α, β, ω, ρ are all strictly

positive.

3-Parameter sub-classes of the generalized beta distribution:

Inverse Burr IB(α, ω, ρ) = GB(1, β, ω, ρ)

Burr BR(α, ω, ρ) = GB(α, 1, ω, ρ)

Transferred Gamma TG(α, β, ω, ρ) = GB(α, β, 1, ρ)

Generalized Pareto (3) GP(α, β, ω) = GB(α, β, ω, 1)

Some 2-Parameter sub-classes of the generalized beta distribution

Beta B(α, β) = GB(α, β, 1, 1)

Second Pareto GP(α, ω) = GB(α, 1, ω, 1)

Weibull GP(α, ρ) = GB(α, 1, 1, ρ)

Inverse Pareto IP(β, ω) = GB(1, β, ω, 1)

Loglogistic LL(ω, ρ) = GB(1, 1, ω, ρ)
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In an empricial study investigating more than 100’000 large industrial losses,

Aebischer [1]observed that excess loss distributions always showed two more features:

• Excess loss distributions are convex, i.e. have a monotonic density function

• The slope of the distribution function is finite and strictly greater than zero

Enforcing these two properties eliminates one parameter of the generalized beta

distribution and boils down to the relationship

β = 1/ρ (2.12)

2.2 Generating Functions

The generating functions discussed in this section are technical tools which often

facilitate calculations using random variables. We will not be dealing here with

existential questions but will assume that we are only considering random variables

for which these functions are finite. This is in fact so in most cases. The Pareto

distribution constitutes one exception, although it is mainly used only in finite layers

where there is no problem with existence.

2.2.1 The moment generating function

For a random variable X we define the moment generating function as

MX : R→ R+, MX(s) = E[esX ] (2.13)

The following properties of M are important in practice:

• The distribution of X is uniquely determined by the moment generating func-

tion.

• dn

dsnM
∣∣
s=0

= E[Xn]

• If X1, X2 are independent random variables and X = X1 +X2, then:

MX(s) = MX1(s) ·MX2(s)
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Example:

For a Poisson(λ) distributed random variable N the following applies:

MN (s) = eλ(es−1). (2.14)

From this it immediately follows that the sum of 2 independent Poisson variables

with expected values λ1 and λ2 is again Poisson distributed with parameter λ1 +λ2.

2.2.2 The cumulant generating function

The cumulant generating function ϕX is the logarithm of the moment generating

function:

ϕX : R→ R, ϕX(s) = ln (MX(s)) (2.15)

The value

kj =
dj

dsj
ϕ

∣∣∣∣
s=0

(j ≥ 1) (2.16)

is called the k-th cumulant of the distribution of X. Quite analogous to the moment

generating function we have:

• The distribution of X is uniquely determined by the cumulant generating

function.

• If X1, X2 are independent random variables and X = X1 +X2, then:

ϕX(s) = ϕX1(s) + ϕX2(s)

• The cumulants can be expressed in terms of the moments αj = E[Xj ] , in

particular the following applies:

k1 = α1 (2.17)

k2 = α2 − α2
1 (= V ar[X]) (2.18)

• For i=2,3 we have: ki = E[(X − E[X])i].1

1Note that this characteristic does not apply to i ≥ 4. Thus E[(X − E[X])4 = k4 + 3k2
2 for

example.
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Example:

For a Poisson(λ) variable: kj = λ (independent of j!)

2.2.3 The probability generating function

For random variables N with values in N the probability generating function

WN : R→ R+, WN (s) =E[sN ] (2.19)

is often considered.

We have as characteristics :

WN (s) =
∞∑
k=0

skP [N = k] (2.20)

P [N = k] =
dk

dsk
WN

∣∣∣∣
s=0

· 1
k!

(2.21)

Example: if N ∼ Poisson(λ) then: WN (s) = eλ(s−1)

2.3 The Aggregate Loss Process

This section deals with the aggregate loss process S =
∑N

i=1Xi. First of all we will

deduce some important properties of the distribution of S.

2.3.1 Distribution function, generating functions and moments

Proposition 1 The distribution function of S is given by

FS(s) =
∞∑
k=0

P [N = k] F ∗kX (s)

where F ∗kX is the k-th convolution power of FX .2

Proof.
2The convolution of two distribution functions F1 and F2 is defined as F1 ∗ F2(x) =∫∞
−∞ F1(x− y)dF2(y)
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Follows directly from conditioning to N and from the fact that the distribution

function of a sum of independent random variables is obtained by the convolution

of the individual distribution functions.

Proposition 2

MS(z) = MN (ϕX(z)) = WN (MX(z)) (2.22)

ϕS(z) = ϕN (ϕX(z)) (2.23)

Proof.

MS(z) = E[ezS ] =
∞∑
n=0

E[ezS | N = n] P[N = n]

=
∞∑
n=0

E[ezX1+ ···+ zXN ] P[N = n]

= E[(MX(z))N ]

= E[eN lnMX(z)] = MN (ϕX(z))

We will now consider two applications:

Application 1

Let S1, . . . , Sk be independent compound Poisson-distributed random variables

with Poisson parameters λi and loss severities Xi,j (1 ≤ i ≤ k, 1 ≤ j ≤ Ni). For

the distribution of Xi,j we assume that the moment generating functions MXi exist

(since the (Xi,j)j=1...Ni are i.i.d. for fixed i, we will omit the index j ). Furthermore

let S =
∑k

i=1 Si. According to (2.23) and (2.14):

ϕS(z) =
∑
i

λi(MXi(z)− 1)

= λ

(∑
i

λi
λ
MXi(z)

)
− λ (2.24)

whereby we have let λ =
∑

i λi . However, the expression in brackets is the

moment generating function of a random variable with the distribution function

F =
∑

i
λi
λ FXi (it should be noted that this is not like the distribution of

∑
i
λi
λ Xi

). Thus the distribution of S is also compound Poisson with Parameter λ and single

loss severity distribution F.We will see an important application of this result in the

chapter on exposure rating .
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Application 2

As a second application we prove Lemma 1 for the negative-binomial distribution.

The proof of the binomial distribution is carried out in the same manner and is left

to the reader as an exercise. We want to show that if N ∼ negative-binomial (a, p),

then:

ND ∼ negative-binomial (a,
p

p+ π(1− p)
)

where π = P [X > D] and ND =
∑N

i=1 I{Xi >D}.

First of all we note that the moment generating function of N is given by

MN (z) =
(

p

1− (1− p)ez

)a
Furthermore we have for the moment generating function of Y = I{X>D} :

MY (z) = E
[
exp{z · I{X >D}}

]
= 1− π + πez

The moment generating function of ND =
∑N

i=1 Yi is according to Proposition 2

MND(z) = MN (ln(MY (z))

=
(

p

1− (1− p)(1− π + πez)

)a
=

( p
p+(1−p)π

1− (1− p
p+(1−p)πe

z)

)a
and this leads to the assertion.

The so-called Wald-Identities are very useful for calculating the expected value

and variance of the aggregate loss distribution:

Proposition 3 (Wald-Identities)

E[S] = E[X] · E[N ] (2.25)

V ar[S] = V ar[X] · E[N ] + (E[X])2 · V ar[N ] (2.26)

= E[N ] ·
(
E[X2] + (Q− 1)(E[X])2

)
(2.27)

21



where Q stands for V ar[N ]
E[N ] .

Proof.

(2.25) results immediately from E[S] = E[E[S/N ]] = E[N ·E[X]]. In order to obtain

(2.26) we first of all note that

E[S2/N ] = E

 N∑
i=1

X2
i +

∑
i 6=j

XiXj


= N · E[X2] + (N2 −N) · (E[X])2

From V ar[S] = E[E[S2/N ]]− (E[S])2 (2.26) follows. The variants (2.27) follow

in the same way using E[N2] = E[N ] ·Q+ (E[N ])2. �

Note: The class consisting of the Poisson, binomial and negative-binomial dis-

tributions is often called the Panjer class (named after the Canadian mathematician

Harry Panjer). For this distribution the above-defined quantity Q is called the

Panjer factor. The following then applies:

Poisson Q = 1

Binomial Q < 1

Neg. Binomial Q > 1

In the case of N ∼ Poisson(λ) the simplified formula:

V ar[S] = λ · E[X2]

follows due to Q = 1

In concluding this section we would like to discuss a method with which aggregate

loss distributions with negative binomial distributed numbers can be traced back to

aggregate loss distributions with Poisson distributed number of losses. This involves

the so-called Ammeter transformation which we will define in the following theorem:

Theorem 2 (Ammeter Transformation)

We consider an aggregate loss process (N,X), where N ∼Polya(a, β). The Am-

meter transform of this process is an aggregate loss process (Ñ , X̃), where

Ñ ∼ Poisson(a · β) (2.28)

M
X̃

= 1− ln(1− β(MX − 1))
β

(2.29)
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Therefore :
N∑
i=1

Xi
d∼

Ñ∑
i=1

X̃i

ie we can replace the Polya process with a Poisson process having the same expected

value3, if we transform the distribution of the loss amount according to (2.29).

Proof.

We show that both processes have the same moment generating function. The

moment generating function of S =
∑N

i=1Xi is

MS(z) = WN (MX(z))

=
1

(1− β(MX(z)− 1))a

on the other hand

M
S̃

(z) = exp(a · β(M
X̃
− 1))

= exp
{
a · β ·

(
1− ln(1− β(MX(z)− 1))

β

)
− 1
}

= (1− β(MX(z)− 1))−a

and from this follows the assertion.

2.3.2 The distribution of excess losses

In this section we aim to investigate the distribution of the excess-loss burden∑N
i=0(Xi −D)+. The main result is as follows

Proposition 4 Let D > 0 and ND be the number of losses greater than D (see

(2.2)). Then:
N∑
i=0

(Xi −D)+ d∼
ND∑
i=0

(Yi −D)+

where Yi are i.i.d random variables with distribution P [. | X > D] and independent

of ND.
3Note that E[N ] = a · β
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Proof.

P is used to denote the probability measure belonging to the model (N,X) and P

the measure belonging to the model (Y,ND). Then:

P

[
N∑
i=1

(Xi −D)+ ≤ s

]
=

∞∑
n=0

P

[
N∑
i=1

(Xi −D)+ ≤ s | ND = n

]
· P [ND = n]

=
∞∑
n=0

P

[
n∑
i=1

(Xi −D)+ ≤ s | X1, . . . , Xn > D

]
· P [ND = n]

=
∞∑
n=0

P

[
n∑
i=1

(Yi −D)+ ≤ s

]
· P[ND = n]

= P

[
ND∑
i=1

(Yi −D)+ ≤ s

]
�

Example: Poisson-Pareto model

Let the loss amount X Pareto (x0,α) and N , the number of losses larger than x0

be Poisson(λ) distributed. The total annual loss in layer (D,C) then has the same

distribution as when the model (ND, Y ) is considered instead of the model (N,X)

where

Y ∼ Pareto(D,α) (2.30)

ND ∼ Poisson(λD)

with λD = λ · P [X > D] = λ · (x0
D )α.

2.3.3 The Panjer Algorithm

As we have seen, the distribution function of the aggregate loss is equivalent to

FS(z) =
∞∑
i=0

F ∗ iX (z) P [N = i]

This expression cannot be exactly evaluated for most distributions so that it

is necessary to rely on numerical methods. For discrete severity distributions the

convolutions can be calculated by computer, though this is rather time-consuming

despite present-day technology.
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A simple recursive formula for the numerical calculation of FS was developed

by Panjer. This algorithm only functions for discrete severity distributions which

means that continuous distributions must first be made discrete. We will deal with

this point in greater detail later. We will first consider a mixed model (N,X) and

assume the following:

1. The distribution of X is concentrated on the lattice dN (for some d ∈ R+)

with fk = P [X = d · k]. The moment generating function MX exists in an

environment of 0.

2. The distribution of N is from the Panjer class, ie Poisson, binomial or negative

binomial.

The assumption made in 1) does not cause problems in practice since one has to

restrict oneself to distributions with finite support in the case of numerical models.

As preparation we require the following result:

Lemma 2 The distribution of N is from one of the three types above, if and only if

there are constants a, b ∈ R , so that the weights pk = P [N = k] fulfill the following

relation:

p0 6= 0

pk = (a+
b

k
) pk−1 (2.31)

Proof.

See Sundt / Jewell (1981): ”Further Results on Recursive Evaluations of Compound

Distributions”, ASTIN Bulletin

On the basis of our assumptions the distribution of S =
∑N

i=1Xi is also concentrated

on the lattice dN. This can be calculated recursively as follows:

Theorem 3 (Panjer) The weights gk = P [S = d · k] fulfill the following relation:

g0 =

 p0 if f0 = 0

WN (f0) if f0 > 0

gk =
1

1− af0

k∑
i=1

(a+ i
b

k
) fi gk−i (2.32)
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Proof.

Proof here is essentially provided by the fact that the moment generating functions

MS(z) =
∑
k

gk e
kdz

MX(z) =
∑
k

fk e
kdz

fulfill the following differential equation:

M
′
S = aMXM

′
S + (a+ b)M

′
XMS (2.33)

Before proving (2.33) , we will show how then the Theorem follows. If we insert

the definition of the moment generating functions into (2.33), we obtain by the

comparison of coefficients

gk · k =
∑

i,j: i+j=k

a fi gj k + b fi gj i

which directly provides (2.32). It thus remains to show (2.33):

By (2.31) we have

kpk = a(k − 1)pk−1 + (a+ b)pk−1

We multiply this equation by {MX(z)}k−1M
′
X(z) and sum over k. This provides

∑
k

kpk{MX(z)}k−1M
′
X(z) = a

∑
k

(k − 1)pk−1{MX(z)}k−1M
′
X(z)

+(a+ b)
∑
k

pk−1{MX(z)}k−1M
′
X(z)

With MS(z) =
∑∞

k=0 pk{MX(z)}k the statement follows.

2.4 Stop-loss transform and exposure curves

In this section we will be defining two very useful integral transformations and will

be investigating their characteristics. In the following Z is always used to denote a

positive random variable with finite expected value.
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2.4.1 Stop-loss transformation

Definition 4 The stop-loss transform of Z is the function

sltZ : R+ → R+, sltZ(u) =
∫ ∞
u

(1− FZ(s)) ds (2.34)

The name of this function derives from the fact that it provides precisely the

expected loss in a stop-loss treaty with infinite cover as a function of the priority.

The following applies:

Proposition 5

E[Lu,∞(Z)] = sltZ(u) (2.35)

Proof.

In literature proof of this statement by means of partial integration is commonly

found. The disadvantage of this method is that it only functions when the distri-

bution of Z has a density - which is not always the case in practice. The following

proof functions for any distributions:

sltZ(u) =
∫ ∞
u

P [Z > s] ds

=
∫ ∞
u

∫ ∞
0

I(s,∞)(z) dFZ(z) ds

=
∫ ∞

0

∫ ∞
u

I(0, z)(s) ds dFZ(z)

=
∫ ∞

0
(z − u)+ dFZ(z)

= E[(Z − u)+] �

Proposition 6 The stop-loss transform is a decreasing convex function with sltZ(0) =

E[Z] and sltZ(∞) = 0.

Proof.

The boundary values result directly from the definition. The convexity arises because

the derivative slt′Z = F (z)− 1 is increasing. �

Example:

For Z ∼ Pareto (x0, α) with α > 1 the following applies: sltZ(u) = xα0
α−1u

1−α.
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Definition 5 On the set of the distribution functions with finite expected values we

define a partial ordering ≺ by

F ≺ G⇔ sltF (u) ≤ sltG(u) ∀u ≥ 0

This is called the stop-loss order. We say that the distribution G is more dangerous

than F .

Proposition 7 Let F and G be two distribution functions with their associated

expected values µF and µG. Furthermore:

1. µF ≤ µG

2. ∃ β > 0 with F (x) ≤ G(x) for x < β and F (x) ≥ G(x) for x ≥ β.

Then: F ≺ G

Proof.

We have to show that for all t ≥ 0∫ ∞
t

G(x)− F (x) dx ≤ 0

For t ≥ β this is evident. For t < β we have:∫ ∞
t

G(x)− F (x) dx ≤
∫ ∞
−∞

G(x)− F (x) dx = µF − µG ≤ 0 �

Lemma 3 The stop-loss order is preserved under mixture and convolution, i.e for

two series of distributions (Fi)i∈I , (Gi)i∈I with ∀ i ∈ I, Fi ≺ Gi :

∑
i∈I

piFi ≺
∑
i∈I

piGi

F1 ∗ F2 ≺ G1 ∗G2

where (pi)i∈I is a set of weights with
∑
i∈I

pi = 1.

Proof: Exercise
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Corollary 1 We consider two severity/frequency models (N,X) and (N,Y ) with

FX ≺ FY . Then the distribution of
N∑
i=1

Xi is less dangerous than the distribution of

N∑
i=1

Yi.

Proof: Follows from the Lemma and the fact that FS =
∞∑
i=1

F ∗i · P [N = i] .

Example: Upper bound for a stop-loss premium.

Let’s consider a motor liability portfolio with the following underlying model:

Number of claims N ∼ Poisson(λ)

Single claim-size X ∼ FX , unknown distribution

Aggregate Loss S =
N∑
i=1

Xi

We further assume that the insured value (policy limit) is equal to m for all

policies in the portfolio and that we know the average claim size µ = E [X] . We

want to derive an upper bound for the stop-loss risk premium E [LD,∞(S)].

The idea is to find a claim-size (severity) distribution which is more dangerous

than FX . An obvious candidate is the random variable

Y =

 0 with probability 1− µ
m

m with probability µ
m

Using Proposition 7 we immediately see that FX ≺ FY . Thus,

E[LD,C(S)] ≤ E

[
LD,C

(
N∑
i=1

Yi

)]
= E [LD,C (N∗ ·m)]

=
∞∑
k=0

(km−D)+ · e−λ∗ (λ∗)k

k!

where N∗ is a Poisson random variable with parameter λ∗ = λ∗P [Y > 0] = λ∗ µm .

Application in the discretisation of continuous distributions

Very often, eg when one wishes to use the Panjer algorithm, it is necessary to

approximate a continuous distribution by means of a discrete distribution From an
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actuarial point of view one of the desirable characteristics is an approximation which

is such that the expected value (ie the risk premium) is conserved. We would now

like to present two methods where this characteristic is fulfilled. As we will see,

in one case the approximation will be more dangerous whilst in the other case the

original distribution will be more dangerous. Let F be a distribution function with

mass q between a and b (b > a), ie q = F (b)− F (a).

a) Method of mass concentration (→ less dangerous distribution)

Concentrate the mass q in a point c (a < c < b), so that

qc =
∫ b

a
x dF (x)

b) Method of mass dispersion (→ more dangerous distribution)

Distribute the mass q over the endpoints a and b so that

q = q1 + q2

q1a+ q2b =
∫ b

a
x dF (x)

Lemma 4

G ≺ F ≺ H

Proof.

This statement is a direct consequence of Proposition 7 . Here, however, we want

to prove a little more and show how the stop-loss transforms of G and H look like.

i) sltG

For a ≤ u ≤ c the following applies:

sltG(u) =
∫ ∞
u

(1−G(s)) ds

= (c− t)(1− F (a)) + (b− c)(1− F (b)) +
∫ ∞
b

(1− F (s)) ds

and consequently

slt′G(u) = slt′F (a) ∀u ∈ [a, c]

and via analogous calculation the following is obtained

slt′G(u) = slt′F (b) ∀u ∈ [c, b]
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ii) sltH

We want to show that the equation

slt′H(u) =
1

b− a
(sltF (b)− sltF (a)) ∀u ∈ [a, b] (2.36)

holds. Let u ∈ [a, b]. The following then applies

slt′H(u)(b− a) = −(1−H(a))(b− a)

=
∫ b

a
(1−H(a)) ds

= −
∫ b

a
(s− a) dH(s)− (b− a)(1−H(b))

= −
∫ b

a
(s− a) dF (s)− (b− a)(1− F (b))

= −
∫ b

a
(1− F (s)) ds

= sltF (b)− sltF (a) �

2.4.2 Exposure curves

Exposure curves, sometimes called deductible-credit curves, appear in rating excess

of loss treaties. They are defined as follows:

Definition 6 The exposure curve belonging to the random variable Z is the function

eZ : R+
0 → [0, 1], eZ(u) =

1
E[Z]

∫ u

0
(1− FZ(s)) ds (2.37)

=
1

E[Z]
E[L0,u(Z)]

If the distribution of Z has a finite support [0,M ] (eg MBBEFD), then the exposure

curve belonging to the normalized variable 1
MZ defined on the interval [0, 1] is usually

considered.

Proposition 8 The exposure curve is an increasing concave function with eZ(0) = 0

and eZ(∞) = 1 (or eZ(1) = 1 in the normalized case).

Proof.

The boundary values result directly from the definition. The concaveness derives

from the fact that the derivative e′Z = 1− FZ is decreasing. �
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The exposure curve eZ(u) - as a function of the (possibly normalized) priority

- shows which part of the total risk premium (= E[Z]) the DI retains when ceding

the cover ∞ xs u, where the random variable Z describes the extent of loss.

Example (finite support):

An Excess of Loss reinsurance

C xs D

is concluded on a DI’s portfolio consisting of similar risks (eg detached houses). The

reinsurer is aware of the following values:

• The original premium for the portfolio: Π0.

• The DI’s average loss ratio: 80%

• The sum insured V is assumed to be the same for all risks

• The exposure curve relevant to the class of risks under consideration4

eZ : [0, 1]→ [0, 1]

On the basis of the first two items of information, the following applies:

E[S] = 0.8 ·Π0 = E[N ] · E[X]

The RI premium required for C xs D cover is thus equivalent to:

E[N ] · E[LD,C(X)] =
0.8 ·Π0

E[X]

∫ D+C

D
1− FX(s) ds

= 0.8 ·Π0 ·
(
eZ(

C +D

V
)− eZ(

D

V
)
)

Note:

The MBBEFD distribution introduced in the section on loss-severity distributions

is derived from the adaptation to existing empirically obtained exposure curves.
4In actual fact many reinsurers have such curves, developed as a result of many years of expe-

rience. Knowledge of the exposure curve is of course equivalent to knowledge of distribution. It

is, however, preferable to present such information in the form of exposure curves rather than as

distribution functions. The advantage of this is that the reinsurance premium can be calculated

from the exposure curve without integration - a factor which was of course more important at the

time these curves were introduced (before the information age!) than it is nowadays.
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Chapter 3

Risk capital

3.1 Why loadings are required

3.1.1 Ruin-theoretical consideration

Let us imagine a company calculating a premium only accounting for expected losses

and the costs incurred (administrative costs, brokerage, etc), in the hope that the

available capital reserves would be sufficient to balance out the fluctuations between

the expected and the actual results. Such a non-profit-making company would thus

require for a treaty with a loss burden S, the premium

P = E[S] +K

where K is defined so that the sum of all K s from all treaties would provide the

exact total costs of the reinsurance. (It is very difficult to attribute the exact costs

to each treaty). Unfortunately any such reinsurer would with probability 1 be ruined

after a finite period of time, regardless of how large his capital reserve might be. In

order to show this we introduce the following quantities:

• Si = the annual loss burden in the year i (i = 1, 2, . . .)

• Pi = the premiums paid in year i

• Ki = the cost in year i
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• Ri = Pi − Si −Ki = the result in year i

• Bi =
∑i

k=1Rk = the total balance following i years

Since we have already used P to represent the premiums, we will use P to indicate

the probability measure. We now make the following assumptions:

1. supiE[Si+1 | σ(S1, . . . , Si)] <∞

2. infi V ar[Si+1 | σ(S1, . . . , Si)] > 0

3. Pi+1 = E[Si+1 | σ(S1, . . . , Si)] +Ki+1

It should be noted that we have not assumed independence, nor do the Si all have the

same distribution. The latter assumption would be completely unrealistic in practice

as a company’s portfolio structure and thus also the aggregate loss distribution

generally varies from year to year.

Theorem 4 If the annual losses S1, S2, . . . fulfill the above conditions, then the

following applies for each a > 0 :

P[Ta <∞] = 1

where Ta = min{k ≥ 1, Bk ≤ −a}.

Proof.

First of all we note that (Bi)i∈N is a Martingale since on the basis of assumption 3:

E[Bi+1 −Bi | σ(B1, . . . , Bi)] = 0

A Martingale with bounded increments (assumption 1) can, however, only behave

in 2 ways, depending on whether the variance process

Vn =
n∑
i=1

E[R2
i | σ(R1, . . . , Ri−1)]

for n→∞ remains finite or not. It converges towards a finite limit on the set {V∞ <

∞}, whilst unlimited oscillation is to be observed on {V∞ =∞}, ie lim supi→∞Bi =

∞ and lim infi→∞Bi = −∞. In our case, due to assumption 2, V∞ = ∞ P-a.s.

applies and the balance Bi P-a.s. thus achieves every negative level.
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3.1.2 Economic consideration

Private insurers need a certain amount of equity capital to compensate for business

fluctuations. However, they only obtain this capital in the long-term if they aim

at an additional return to the return on risk-free investments, which flows back

to the investors in the form of dividends and increased equity. It is the task of

management to set an appropriate target for returns. Once this is done is must

be defined how much an individual treaty should contribute towards this aggregate

profit. The desired global returns must therefore be calculated in profit margins

for the individual treaties. In keeping with this, the premium for a RI treaty must

comprise the following 3 components:

P = Prisk +K +M

where

Prisk = the risk premium = expected loss

K = the supplement for RI’s costs

M = the profit margin

The global target return on equity capital is given as

∑
all treaties i

Mi

In principle complete freedom exists in determining the individual Mi . We will deal

with the loading principles used in practice in section 4.3.

3.2 The RAC concept

We would now like to deal in greater detail with the capital required by a reinsurance

company and the associated mathematical concepts. This essentially involves the

following two problems:

1. Determining the risk capital required
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2. Dividing the aggregate capital amongst individual business units with regard

to a uniform risk-adjusted performance measurement

The third problem in this respect is the above-mentioned calculation of a global

target return on margins for individual treaties ( → profit margin). We will be

dealing with this point in greater detail later.

3.2.1 Determining Risk-Adjusted Capital (RAC)

Quantile and Shortfall as Risk Measures

In order to determine the risk adjusted capital, we first need to define risk. In our

context risk is related to the potential negative deviation from the expected outcome

of some future events. Let X be the total aggregate loss of the (re-) insurance

company in a given period. We consider the following two risk measures associated

with X :

1. The translated p-quantile of X is defined by

Qp(X) = F−1
X (p)− E[X]

where F−1
X (p) = inf{x : F (x) ≥ p} is the generalized inverse of the distribution

function.

2. The p-Shortfall of X is defined by

SFp(X) =
1

1− p

1∫
p

F−1
x (y) dy − E(X)

Note that in the case where FX is continuous, the shortfall is equal to the conditional

expected value

E[X | X > F−1
X (p)]− E(X)

Both risk measures are widely used in practice, but the shortfall has the advantage

that it is a coherent risk measure whereas the quantile is not.
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Definition 7 A risk measure ρ : L1 → R is called coherent, if the following holds:

1. Translation Invariance: For α ∈ R, ρ(X + α) = ρ(X)

2. Homogeneity: For λ ∈ R+, ρ(λX) = λ · ρ(X)

3. Subadditivity: ρ(X + Y ) ≤ ρ(X) + ρ(Y )

4. Additivity for comonotonic risks: For f, g :R+ → R+, increasing,

ρ(f(X) + g(X)) = ρ(f(X)) + ρ(g(X))

We would like to have translation invariance in order to distinguish between the

contribution to the expected value and the contribution to the volatility. Homo-

geneity is desired to make the risk measure independent of the unit chosen for risk

quantification (especially the currency). Finally, subadditivity enables to quantify

the diversification benefit. The reason while the quantile is not coherent lies in the

fact that 3. is violated, i.e. subadditivity does not hold.

3.2.2 The Swiss Solvency Test

The Principles of the Swiss Solvency Test are the following:

• All assets and liabilities are valued market consistently

• Risks considered are market, credit and insurance risks

• Risk-bearing capital is defined as the difference of the market consistent value

of assets less the market consistent value of liabilities, plus the market value

margin

• Target capital is defined as the sum of the Expected Shortfall of change of risk-

bearing capital within one year at the 99% confidence level plus the market

value margin
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• The market value margin is approximated by the cost of the present value of

future required regulatory capital for the run-off of the portfolio of assets and

liabilities

• Under the SST, an insurers capital adequacy is defined if its target capital is

less than its risk bearing capital

• The scope of the SST is legal entity and group / conglomerate level domiciled

in Switzerland

• Scenarios defined by the regulator as well as company specific scenarios have to

be evaluated and, if relevant, aggregated within the target capital calculation

• All relevant probabilistic states have to be modeled probabilistically

• Partial and full internal models can and should be used. If the SST standard

model is not applicable, then a partial or full internal model has to be used

• The internal model has to be integrated into the core processes within the

company SST Report to supervisor such that a knowledgeable 3rd party can

understand the results

• Public disclosure of methodology of internal model such that a knowledgeable

3rd party can get a reasonably good impression on methodology and design

decisions

• Senior Management is responsible for the adherence to principles

The starting point for the Swiss Solvency Test (SST) is thus the economic balance

sheet of the company. The available capital is defined as

CA(t) = Assets(t)− Liabilities(t) (3.1)

whereby both assets and liabilities are valued market consistently. The market

consistent valuation of liabilities means that one takes the market value -if exists -

or the value of the replicating portfolio of traded financial instruments plus the cost

of capital for the remaining ”‘basis risk”. The replicating portfolio is a portfolio
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of financial instruments which are traded in a deep, liquid market, with cash flow

characteristics matching either the expected cash flows of the policy obligations or,

more generally, matching the cash flows of the policy obligations under a number

of financial market scenarios. The replicating portfolio has to match the company

specific cash flows, depending on the company specific expenses, claims experience

etc. The cost of capital margin is defined as the cost for future regulatory capital

which has to be set up for the liabilities. The cost of capital was set for 2008 as 6%

over risk-free.

The Solvency Capital Requirement (SCR) captures the risk that the economic

balance sheet of the company at t = 1 differs from the economic balance sheet at

t = 0.

SCR = ρ(CA(1)/(1 + r)− CA(0)) +MVM

(3.2)

where ρ stands for the 99% shortfall risk measure and r is the one year risk free

rate.

The market value margin is the cost of future regulatory capital which has to be set

up for the liabilities, i.e

MVM =
∑

t≥1 SCR(t)

(3.3)

The capital SCR(t) , t ≥ 1 has to be set up for the run-off risk (i.e. the risk that

the actual claims will be higher than reserved ultimates at t=0) and the credit and

market risk for the replicating portfolio.
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3.2.3 Division of capital and performance measurement

Now that we have determined a company’s total risk capital we wish to allocate

it to the individual sub-units commensurate to their risk. Sub-units can be of an

organisational nature (such as profit centers) or products (eg all non-proportional

business). This division aims at judging and comparing the results of the individual

sub-units. The riskier the business of a sub-unit is, the more capital should be

allocated to it. We will then be in a position to make a direct comparison of the

results of the individual areas by measuring the return against the capital allocated.

This is referred to as return on risk-adjusted capital or in short RORAC.

It is important to recognise that the risk-adjusted capital defined in this way

is an imaginary concept and not something which can be physically attributed to

the various business segments. This RAC is (as we have seen in the last chapter)

generally much lower than the risk capital which the unit would require if it were

an independent company having the same risk tendencies.

It is now a question of defining a key for the risk-commensurate allocation of

capital. For this we use the following simplified model:

• The entire company U is divided into n separate sub-units U1, . . . , Un

• The results of the sub-units are R1, . . . , Rn, and those of the whole company

R =
∑
Ri

• Ri = Vi · Yi, where Vi is a measure of volume for the unit i.

For a given risk model (distribution of (Y1, . . . , Yn)), the risk of the total portfolio

depends only on the volume vector V = (V1, . . . Vn), i.e. ρ = ρ(V ). The risk of the

unit i on a standalone basis is ρi = ρ(0, . . . , 0, Vi, 0, . . . , 0) and the diversification

benefit is defined as

∆ρdiv(V ) =
∑

ρi − ρ(V ) (3.4)

For quantifying the contribution of a unit to the total risk, we can use different

principles:
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1. The marginal principle

∆iρ =
ρ(V + ∆Vi)− ρ(V )

∆Vi
∗ Vi (3.5)

Since in general
∑

∆iρ 6= ρ(V ), it is better to replace ∆iρ with the normalized

contribution

∆̃iρ = ρ(V ) ∗ ∆iρ∑
j ∆jρ

(3.6)

2. The ’with and without’ principle

∆iρ = ρ(V )− ρ(V1, V2, . . . , Vi−1, 0, Vi+1, . . . , Vn) (3.7)

This is a special case of the marginal principle with ∆Vi = −Vi.

3. The Euler principle

∆iρ =
∂ρ(V )
∂Vi

∗ Vi (3.8)

Note that according to the Euler Theorem for homogeneous functions we have

for all λ > 0 :

∑ ∂ρ(λV )
∂(λVi)

∗ Vi = ρ(V ) (3.9)

Especially, for λ = 1 we obtain

∑
∆iρ = ρ(V )

Theorem 5 The Euler principle is the only allocation principle which satisfies the

axioms of a coherent allocation defined by Denault.

• Full allocation:
∑
Ki = K, whereby Ki is the capital allocated to unit i and

K is the total capital.
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• No undercut: the capital allocated to any subportfolio is smaller or equal to the

capital determined for the subportfolio on a standalone basis, using the same

risk measure.

• Symmetry: two units contributing the same risk get the same capital.

• Additivity over risk measures: ρ = ρ1 + ρ2,⇒ Ki(ρ) = Ki(ρ1) +Ki(ρ2), ∀i

• Riskless allocation: ρi = 0⇒ Ki = 0

Remark: The covariance principle is an Euler allocation with ρ = σ(standard

deviation).

In this case we namely have

∆iρ =
∂σ

∂Vi
∗ Vi (3.10)

Furthermore,

∂σ

∂Vi
∗ Vi =

Vi
2
∂σ2

∂Vi

1
σ

(3.11)

Using

σ2 =
∑
k,j

Cov[Rk, Rj ]

we get
Vi
2
∂σ2

∂Vi
= Cov[Ri, R]

and using (3.11) we get

∆iρ =
Cov[R,Ri]
σ(R)

(3.12)

ie. the capital must be allocated in proportion to the covariances of each sub-unit

with the total business.
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3.3 Appendix to Chapter 3: Some properties of Quan-

tiles

Here we ant to discuss some properties of quantiles. We will especially prove that

quantiles are not subadditive, but they are additive for comonotonic risks.

Definition 8 Two random variables X and Y on a probability space (Ω,F , P ) are

comonotonic, if there exists a probability space (Ω̃, F̃ , P̃ ) and (X̃, Ỹ ) random vari-

ables on Ω̃ such that

1. (X̃, Ỹ ) d= (X,Y )

2. X̃(ω1) ≤ X̃(ω2) implies Ỹ (ω1) ≤ Ỹ (ω2) ∀ω1, ω2 ∈ Ω̃.

Proposition 9 If X and Y have continuous marginals, it holds that

X and Y comonotonic ⇐⇒ Y = g(X) a.s., with g = F−1
Y ◦ FX increasing

Lemma 5 Let X and Y denote two random variables such that there exists an in-

creasing function g, such that Y=g(X). In addition suppose that g is continuous.

Let xp := F−1
X (p) and yp := F−1

Y (p) denote the quantile functions of X and Y . Then

yp = g(xp), (3.13)

that means, that the quantiles transform the same way like the random variables.

Proof.

(i) g increasing =⇒ {ω ∈ Ω : X(ω) ≤ xp} ⊆ {ω ∈ Ω : g (X(ω)) ≤ g(xp)},

=⇒ P [g(X) ≤ g(xp)] ≥ P [X ≤ xp] ≥ p. (3.14)

(ii) Since g is continuous we know that

∀ε > 0 ∃δ > 0 such that g(z) > g(xp)− ε, whenever z > xp − δ

thus g(z) ≤ g(xp)− ε =⇒ z ≤ xp − δ,
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therefore {ω ∈ Ω : g (X(ω)) ≤ g(xp)− ε} ⊆ {ω ∈ Ω : X(ω) ≤ xp − δ},

hence

∀ε > 0 ∃δ > 0 : P [g(X) ≤ g(xp)− ε] ≤ P [X ≤ xp − δ] < p (3.15)

=⇒ yp = inf {z : P [g(X) ≤ z] ≥ p} = g(xp).

In the following theorem we will show that in a case of two comonotonic random

variables the sum of their quantiles is equal to the quantile of their sum.

Theorem 6 Let X and Y denote two comonotonic random variables. Then we have

F−1
X+Y (p) = F−1

X (p) + F−1
Y (p) )

Proof.

Because of comonotonicity there exist continuous increasing functions

u, v : R→ R and a random variable Z such that

(X,Y ) d= (u(Z), v(Z))

and thus

X + Y
d= (u+ v)(Z)

Using the previous Lemma and the fact that u + v is a continuous increasing

function we obtain

F−1
X+Y (p) = (u+ v)(F−1

Z (p)) = u(F−1
z (p)) + v(F−1

z (p)) = F−1
X (p) + F−1

Y (p) )

We now show that quantiles are not subadditive by giving a counterexample:

Lemma 6 If X and Y are independent random variables, X,Y ∼ Pareto
(
1, 1

2

)
,

then

P (X + Y ≤ 2z) < P (X ≤ z) ∀z > 1. (3.16)
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Proof.

z > 1 ⇒ 2z > z + 1 ⇒ 2z − 1 > z ⇒
√

2z − 1 >
√
z

⇒
√

2z − 1 >
z√
z
⇒

√
2z − 1
z

<
1√
z
⇒ 2

√
2z − 1
2z

>
1√
z

Hence

P (X + Y ≤ 2z) = 1− 2
√

2z − 1
2z

< 1− 1√
z

= P (X ≤ z)

Let X,Y be independent Pareto
(
1, 1

2

)
distributed random variables and 0 <

p < 1.Then:

F−1
X+Y (p) > F−1

X (p) + F−1
Y (p)

Proof.

Let p ∈ (0, 1).Then z = F−1
X (p) > 1.Form the previous Lemma we then have

P [X + Y ≤ 2z] < P [X ≤ z] = p

Thus,

F−1
X+Y (p) > 2z = F−1

X (p) + F−1
Y (p)
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Chapter 4

Rating non-proportional

reinsurance treaties

In this chapter we will investigate the methods for determining the premium neces-

sary for a reinsurance treaty. Before going into further detail, we need as a first step

to understand the components of the premium, i.e. all the costs incurred by a rein-

surer. For this, we look at the economic value generated by an insurance contract:

Every insurance contract generates a number of cash flows, some of them positive,

others negative. In order to evaluate the economic value of the resulting cas-flow

stream, we need first to define at which rate we discount these cash flows. The prin-

ciple we use here is a strict separation of underwriting and investment activities:

we assume that the investment department grants to the (re-)insurance operation

a risk free return (for an appropriate asset management fee). Thus we discount all

cas-flows at the risk free rate to get the present value (PV). Let’s now look at all

the cash-flows which incur for a reinsurance contract:

1. Premiums

2. Commissions

3. Claims

4. Acquisition Expenses
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5. Runoff Expenses

6. Capital Costs

7. Taxes

8. Asset Management Fees

We assume that all items are present values, i.e. already discounted at the

risk free rate. On the internal expense side we have differentiated between the

acquisition expenses which are associated with new business written (marketing,

underwriting, etc) vs. the runoff expenses which incur after the contract has been

written (claims management, reserving,etc). The capital costs represent the target

return on the capital allocated to this contract. We call (1)-(2)-(3)-(4)-(5)-(6)-(7)-

(8) the economic profit generated by this contract. This profit is thus after deduction

of all expenses and after tax. Note that the tax item consists of two components,

namely the tax on the underwriting profit and the tax on the risk free return on the

allocated capital. The latter item is sometimes also called ”‘double taxation cost”,

reflecting that (re-)insurance companies are in a competetitive disadvantage vs. an

investment fund because the investment income available to their shareholders is

after tax (and shareholders will typically pay again tax on the dividends or capital

gains).

Let’s now consider a direct insurer’s portfolio and take X1, . . . , XN to represent the

original losses that the portfolio will produce during its treaty period, extending into

the future. We now look at the most general case of a non-proportional reinsurance

contract, namely an excess of loss treaty C xs D with an aggregate deductible AD

and an aggregate limit AL. The reinsured loss from such a treaty is

SRV = LAD,AL(SXL)

where

SXL =
N∑
i=1

LD,C(Xi)

In the case AD = 0, AL = ∞ we have a simple excess of loss contract, and in

the case D = 0, C = ∞ a stop loss AL xs AD. The rating procedure, i.e. the

calculation of the required premium, can be divided into the following steps:
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1. Determining the distributions of loss severity and number of losses

2. Determining the risk premium with respect to AD, AL and possibly other

treaty conditions

3. Determining the payout pattern for losses and premiums and discounting them

at the risk free rate.

4. Determining the loadings for items (4)-(8)so that the contract produces the

required economic profit.

We will now discuss the individual steps in greater detail:

4.1 Determining the distributions of loss severity and

numbers of losses

4.1.1 Determining loss severity distribution from previous loss ex-

perience

In this procedure the reinsurer does not use his own statistics but instead bases his

calculations exclusively on the loss experience of the portfolio covered. Normally the

direct insurer provides him with information regarding previous original losses from

a certain observation period (usually 5-10 years). This does not, however, comprise

all losses, but only those which exceed a certain threshold s0 . Usually s0 is fixed as

half of the deductible. According to Proposition 4 we can determine the conditional

distribution given X > s0 instead of the original severity distribution. In order to be

able to determine this loss distribution from observations, we must first of all make

appropriate adjustments to the statistical material. Here, we must pay particular

attention to the following factors:

1. Economic changes (inflation, wage levels)

2. Changes in the portfolio (growth, decline, other portfolio mixes)

3. Technical changes
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4. Changes in legislation

5. Changes in insurance conditions

In the case of all of the above factors, it has to be considered whether they

influence the number or the amount of losses (or both), and to what extent. Whereas

the influence of changes in legislation and technical innovations can only be roughly

estimated - if indeed at all, the influence of inflation or of changes in the size of a

portfolio can be quantified quite accurately. For this reason we intend here to deal

only with these two factors. Henceforth we will use the following notation:

1. • k : Number of years of observation

• ni : Number of losses (reported by DI) ≥ s0 in year i (1 ≤ i ≤ k)

• xi1, . . . , xini : reported losses ≥ s0 in year i

The effect of inflation (or deflation) is such that all losses in a given year i become

more expensive by a factor qi (or cheaper by a factor q < 1), ie we have to replace

the observed original losses xij with qixij . Attention should also be paid to the fact

that, following adjustment for inflation, the losses in year i are only known above

the threshold so,i = qis0 which means that all loss information is available only from

the threshold s∗o = maxi s0,i .

In order to now consider the change in the size of the portfolio, we first of all have to

introduce a suitable measure of volume. Usual measures of volume are for example:

Branch Measure of volume

Fire Original premiums or sum insured

Motor liability Original premiums or number of vehicles

Aviation loss Fleet value of airline

Aviation liability Passenger kilometers flown

We use Vi to represent the volume of the i-th observation year and VT as the

(expected) volume of the year to be rated (if the premiums are taken as a measure

of volume, they must of course be adjusted to compensate for inflation and possible

tariff adjustments). The effect of the change in volume depends on the type of cover.

49



In the case of per risk cover (eg fire WXL) it can be assumed that the number of

losses will grow proportionally to the increase in volume, whereas the average loss

amount will remain the same. In the case of per event covers (eg windstorm CatXL)

it is not the number of events which increases but the number of risks which are

affected by an event. Similarly, it is not the frequency of losses which changes but

the severity of the losses. Due to the above considerations we must therefore apply

the following corrections:

CatXL: ni → ni, xij → qi
VT
Vi
xij

WXL: ni → VT
Vi
ni, xij → qixij

(4.1)

Exkursus: Effect of inflation on excess losses

We would now like to examine this point in greater detail as it is so important

in practice. If an original loss increases in cost by a factor a > 1, then the following

applies for losses in excess of priority D

E[LD,∞(aX)] =
∫ ∞
D

(1− FaX(s)) ds

=
∫ ∞
D

(1− FX(
s

a
)) ds

= a

∫ ∞
D/a

(1− FX(s)) ds

= a · E[LD/a,∞(X)]

and subsequently for a finite layer

E[LD,C(aX)] = a · E[LD/a,C/a(X)] (4.2)

Although it is conceivable that there may be cases where the layer with prior-

ity D/a and cover C/a has a smaller loss expectation than the original layer (eg

exponentially distributed losses with expected value < D), for all relevant cases in

practice the opposite is the case, ie the loss in the layer grows by a factor > a (ie

disproportionately).

As an illustration of this we consider a Pareto (x0, α) distributed original loss

X. In accordance with the formula (2.8) the following then applies:

E[LD/a,C/a(X)] = aα−1 · E[LD,C(X)]
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ie the loss in the layer increases by factor aα > a. (end of exkursus)

In branches having a longer settlement period (eg liability), only a rough es-

timate of the actual final loss burden is available in the case of most losses. For

this reason the reinsurer needs to implement an IBNR-procedure on an individual

loss basis in order to get from the previously observed data ni and xij (and ad-

justed - in accordance with the above) to the actual numbers of losses (IBNR effect)

resp. loss amounts (IBNER effect). The loss amount must then be discounted since

the reinsurer is then able to invest premiums obtained until payment for losses is

required.

We have now got as far as adjusting the data and can determine the distribution

we are seeking. The first idea is to look at the empirical loss distribution, ie the

distribution with the distribution function.

Femp(x) =
#(Xij, Xij ≤ x)∑

i ni

However, this distribution function only describes the distribution of the actual loss

burden in a certain domain, in particular Femp(x) = 1 if x is greater than the

greatest of all losses observed in the past. This function is thus only of use in rating

if a sufficient number of losses are available in the layer. Rating by means of the

empirical distribution function is often termed ”burning cost rating”.

If the loss experience in the layer is not representative (eg if the greatest observed

excess loss is smaller than the cover C, or - even more extreme - if so far no loss at

all has been observed in the layer), then an additional model is needed for rating. In

this case an attempt is made to adapt an analytical loss distribution to the observed

data. The question arising here is how many of the observed losses should be taken

into account for adapting the chosen distribution. Admittedly, we know all the

losses ≥ s0, however, we only wish to rate the layer with deductible D > s0. On

the one hand it is desirable to consider as many losses as possible in making the

adjustment to provide a reliable statistical basis; on the other hand the distribution

of the small losses is often very different from the distribution of the higher losses

and consequently distorts the adjustment.
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In cases where a Pareto distribution is used for adjustment (which is very often

the case in practice since it fits very well in the area of major losses) it is for example

possible to proceed as follows in choosing an appropriate threshold, above which the

loss experience is to be considered:

If the losses above a threshold s1 are really Pareto distributed, then they are

also so from every other threshold greater than s1on account of (2.7). This can be

used as follows to determine s1 and the Pareto parameter α : If the parameter α is

calculated for values of x0 in the interval [s0,D] with a maximal likelihood estimate,

ie with the estimator

α̂ =
∑

i ni(x0)∑
i,j ln(Xij/x0)

(4.3)

where ni(x0) denotes the number of losses of the year i greater than x0 (following

correction), then α(x0) should remain constant beyond a certain threshold s1. Then

we chose x0 = s1 and α = α(s1).

In practice this estimate is often vague given the small number of observations

(resulting in a very large variance for the ML estimator). In cases where we have

available a priori information about the possible range of the parameter, we therefore

better use a Bayesian estimator. For the Pareto distribution this is very often the

case, as we have outlined on page 11.

Example:

We investigate a fire portfolio of a primary insurer and want to fit a Pareto(x0, α)-

distribution to l observed losses. As a rule of thumb we have:

1.5 ≤ α ≤ 2

We assume that α itself a gamma distributed random variable with expected

value E [α] = 1.8 and standard deviation σ(α) = 0.3. The gamma distribution has

the density

f(x) =
cγ

Γ(γ)
xγ−1e−cxI{x>0}

and we have

E [α] =
γ

c
; V ar [α] =

γ

c2
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leading in our case to the values c = 20, γ = 36. The important result to note is

that the conditional distribution of

α / X1, . . . , Xl

is again a gamma distribution with parameters

γ/ = γ + l

c/ = c+ T, with T =
l∑

j=1

log(xj/x0)

The Bayes-estimator is thus given by

α̂ = E [α] =
γ/

c/
=
γ + l

c+ T

4.1.2 Determining loss severity distribution according to the expo-

sure method

With this method the reinsurer draws on the composition of the portfolio and the

direct insurer’s premiums. It only works for the case of property insurance (fire

insurance) where the direct insurer provides a so-called risk profile, whereby he

grades his portfolio into different classes according to the sums insured and lists the

original premium for each class. Here is an example of a typical risk profile for an

industrial fire portfolio:

Sum insured Average SI Number of risks Premium rate Loss ratio

1-5 Mio 2.8 Mio 56440 1.92 %0 70%

5-10 Mio 7.0 Mio 6700 1.81 %0 70%

10-30 Mio 17 Mio 3520 1.60 %0 70%

30-100 Mio 54 Mio 860 1.15 %0 70%

100- 500 Mio 220 Mio 250 1.00 %0 70%

The reinsurer now determines an appropriate loss distribution for every class of

risk. This is carried out with the help of market statistics or using his own statistics
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from proportional reinsurances where he knows the extent of all individual losses.

In accordance with the above risk profile we now know for each class i:

• the sum insured Vi (identical for all risks in the class1)

• the number of risks mi

• the normalized loss severity distribution, ie. the distribution of Xi/Vi

• the original premium Pi

• the direct insurer’s loss ratio ki2

The advantage of the normalized loss distribution compared to the absolute loss

distribution is that it is not affected by inflation and currency fluctuations. In

addition, it can be assumed that this distribution is constant for each risk class. In

order to model the aggregate loss of class i we use the mixed model (Ni,Ξi), whereby

Ξi denotes the normalized loss-severity variable of the class i . The aggregate loss

of the period covered by the treaty in class i is then

Si =
Ni∑
j=1

Ξji · Vi

The portfolio’s aggregate loss is of course

S =
∑

Si

We determine the expected value λi = E[Ni] using the relation

E [Si] = ki · Pi = λi · Vi · E [Ξi]

thus,

λi =
kiPi

ViE [Ξi]

In the case where all Ni are Poisson distributed the aggregate loss of the ”individual

model” has - due to (2.24 ) - the same distribution as the aggregate loss in a collective
1This approximation can be improved further by subdividing each class i into sub-classes, as-

suming a certain distribution of sums insured per class.
2so that E[Si] = kiPi
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model with a Poisson (λ) distributed number of loss variables N , where λ =
∑
λi,

and a loss-severity variable Y with the distribution

FY =
∑
i

λi
λ
Fi

From this it ensues that the following also applies for the distribution of aggregate

loss in the layer C xs D :

∑
i

Ni∑
j=1

LD,C(Xj
i ) d∼

N∑
j=1

LD,C(Y j)

and instead of the individual model we can consider the above collective model.

Where the number of losses is best described by means of a Polya distribution, it

is possible to move on to a Poisson model and a transformed loss severity distribution

for each band using an Ammeter transformation. However, the Ammeter transfor-

mation N → Ñ , X → X̃ only guarantees that Si
d∼ S̃i , whereas the corresponding

aggregate loss distributions in the layer are no longer the same, ie

Ni∑
j=1

LD,C(Xj
i )

does not have the same distribution as

Ñi∑
j=1

LD,C(X̃j
i )

For this reason it is not necessary to transform the loss-severity distribution itself,

but rather the distribution of LD,C(X). The disadvantage of this method is that

it is only possible to rate a single layer. (Practical cases usually involve an entire

reinsurance program consisting of several layers).

Exposure rating of natural hazard covers

The procedure in the case of natural hazard covers is somewhat different. A physical

model is first of all used to determine the loss distribution whereby the natural haz-

ard under consideration is described using a family of random variables (M1, . . . ,Ml).

For an earthquake, one variable (the magnitude) is sufficient ; other natural hazards

such as wind storm require several variables. For the sake of simplicity we will limit
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ourselves here to one variable M . It is now a question of establishing the distri-

bution of M , whereby it is of course enough to investigate values of M which can

lead to physical losses. This distribution is usually determined using statistical data

relating to past events. It has to be noted, however, that the magnitudes of histor-

ical events are not independent of each other (this is obvious for earthquakes), so

the distribution to be determined is the conditional distribution for the next period,

given the observed history.

The next step involves creating a relation between M and the degree of loss of

the class of risk under consideration. This requires a somewhat different risk profile

than in the case of fire insurance. The risk-prone areas are divided into zones (→

CRESTA zones) and the sum of the insured values is registered for each zone. This

is necessary because the intensity of an event with a certain magnitude depends on

the zone (in the case of earthquakes it is for example the distance from the epicenter

which is significant). In addition, a further division into various risk classes per

zone is required in order to model the various degrees of vulnerability to loss. This

depends on many factors such as the construction quality of buildings, the stability

of the ground, symmetry etc. For every zone i and class of risk j a function qi,j is

determined, so that Ξi,j = qi,j(M). The aggregate loss for the portfolio is now

Snat =
Nnat∑
k=1

∑
i,j

Ti,j · qi,j(Mk)

where Nnat represents the number of the natural hazard events considered for the

treaty period and Ti,j the sum of all insured values in the corresponding zone and

risk class.

4.1.3 Determining the distribution of the number of losses

In practice either the Poisson or the Polya distribution is almost always used in

calculations. The reasons for this have already been explained several times in the

preceding sections. In practice it is therefore usually a question of deciding which of

the two distributions is most appropriate to the observed loss data. It surely makes

sense first of all to use the Panjer factor (see page 22). More demanding statistical
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methods such as the Chi square test can of course also be used. The problem with

such tests is that often in reinsurance only a very small data base is available.

It is nevertheless possible to rely on certain rules of thumb; it is known for

example that in the case where waiting times between individual loss events are not

independent (eg earthquakes), the Polya distribution is often more appropriate than

the Poisson distribution.

4.2 Determining the risk premium

We have seen in the last section how the distributions of loss severities and numbers

of losses can be determined. If a fixed premium is asked for a treaty this can be

calculated as follows:

Using the Panjer algorithm the distribution function FSXL of

SXL =
N∑
i=1

LD,C(Xi)

is first determined. The desired premium is the expected value of SRI , ie. according

to (2.35)

E[SRI ] =
∫ AL

AD
1− FSXL(s) ds

In practice, however, there is not usually a fixed premium but a loss-dependent

premium function P (X1, X2, . . . XN ). The risk premium then corresponds to a

function Prisk(·), which fulfills the relation.

E[Prisk(X1, X2, . . . XN )] = E[SRI ] (4.4)

We would now like to discuss the most commonly used types of premium functions:

Reinstatement premiums

For treaties having this kind of premium the aggregate limit is given as a multiple

of the cover C , ie AL = (k + 1)C. The constant k represents the number of

reinstatements. Here the cedent is provided with the cover C for a basic premium

Pbas. It is further conceivable that the payment Z made by a reinsurer ”eats away”

part of the cover C and that in the case of an additional loss event the cedent is left
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with only the cover (C − Z)+. He than has to ”top up” the cover to the level C by

paying the appropriate additional premium.

We imagine that k pots each with the contents C are available for reinstatement,

whereby the price of each pot is fixed as a multiple βi (1 ≤ i ≤ k) of the basic

premium. We now consider the following example as an illustration:

A treaty has the cover 20 xs 10 and 2 reinstatements with β1 = 1, β2 = 0.5. For

the sake of simplicity we make AD = 0 in this example. Let us now assume that

the following losses occur in the given sequence:

X1 = 15

X2 = 27

X3 = 38

X4 = 22

The RI pays the amount 5 for the first loss. Without reinstatement the cedent would

only be left with the cover 15 xs 10. He can now increase the cover on the original

amount of 20 by buying the required amount (ie 5) at the price of the first pot .

Pbas · β1 ·
LD,C(X1)

C
= Pbas ·

1
4

He now has the full cover of 20, the pot 1 still contains 15, pot 2 remains untouched

and thus still contains 20.

In the case of the next loss of 27 the RI pays 17 and the cedent can top up his cover

by buying 15 from pot 1 and 2 from pot 2. The additional premium to be paid is

thus

Pbas ·
3
4

+ Pbas ·
1
2
· 2

20

The RI pays 20 of the next loss (38). The cover can, however, only be topped

up to 18 (for the price Pbas · 1
2 ·

18
20) and all pots are now empty. The RI pays 12 of

the fourth loss and there are no more additional premiums to be paid. However, the

cedent is only left with cover 6, ie for a possible further loss only the cover 6 xs 10

is available.
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We will formulate the situation for the general type of case. The RI loss is

provided by the formula (1.5) and the premium function has the following form in

view of the above considerations

Prisk = Pbas ·

(
1 +

k−1∑
i=0

βi+1

C
· LAD+iC ,C (SXL)

)
(4.5)

The basic premium can now be calculated from (4.4) and we obtain:

Pbas = E[SRI ] ·

(
1 +

k−1∑
i=0

βi+1

C
· E[LAD+iC ,C (SXL)]

)−1

(4.6)

To calculate the basic premium the distribution of the aggregate annual loss SXL is

needed. This is usually carried out in practice using the Panjer algorithm. In many

special cases the formula (4.6) becomes much simpler, particularly if all βi are equal.

Let wk,β be the basic premium for k reinstatements with βi = β ∀i and AD = 0.

Then with (4.6) we obtain:

w∞,0 = E[SXL] (∞ no. of free reinstatements)

w∞,β =
w∞,0

1 + β/C · w∞,0
(∞ no of reinstatements at rate β)

wk,0 = E[max {SXL, (k + 1)C}] = w∞,0 − sltSXL((k + 1)C)

wk,β =
wk,0

1 + β/C · E[L0, kC(SXL)]
=

wk,0
1 + β/C · wk−1,0

Exercise: Modification of the above formula for the case AD 6= 0.

Slide with fixed loading

This type of loss-dependent premium can in principle be applied to all RI treaties.

The premium function only depends on the reinsured aggregate annual loss SRI :

Prisk = Prisk(SRI) =


m if SRI ≤ m− l

SRI + l if m− l ≤ SRI < M − l

M if SRI ≥M − l

The premium is thus equal to the loss SRI plus a fixed loading l, whereby a

minimal premium m and a maximum premium M are fixed. Written somewhat
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differently:

Prisk(SRI) = m+ (SRI −m+ l)+ − (SRI −M + l)+

E[Prisk(SRI)] = m+ sltSRI (m− l)− sltSRI (M − l) (4.7)

Usually the minimum premium m and the loading l are first of all defined and

M is then calculated so that (4.4) is fulfilled.

Slide with progressive loading

This is a variant of the type of premium described above, whereby the loading is

not fixed but rather proportional to the loss:

Prisk = Prisk(SRI) =


m if SRI · a ≤ m

SRV · a if m ≤ SRI · a < M

M if SRI · a ≥M

or written differently

Prisk(SRI) = m+ a · (SRI −m/a)+ − a · (SRI −M/a)+

E[Prisk(SRI)] = m+ a · sltSRI (m/a)− a · sltSRI (M/a) (4.8)
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4.3 The Loading for Profit and Capital Costs

4.3.1 General considerations

We have seen, both from an economic and a risk-theoretical point of view that

loading is necessary in addition to the expected losses and expenses. We now consider

a portfolio with the associated RAC and a return target on this capital. With this

the planned total profit G is given and the margins (loading) for the individual

treaties are to be determined in such a way that

G =
∑

all treaties i

Mi

We do not intend to define the precise nature of the RI treaty here; the following

applies in principle to all types of treaty. In this chapter we will represent the total

reinsured loss of the treaty i with Si and the total loss of the reinsured portfolio

(=
∑

i Si) with S, ie we omit the index ”RI”. It should, however, be remembered

that it is a question not of original loss but of RI loss.

The theory of course suggests breaking down the RAC to the level of individual

acceptances using the principle of covariance, according to which the loading should

be calculated using the formula:

Mi =
G

V ar[S]
· Cov[Si, S] (4.9)

Later we will deal with an example where this principle can also be implemented

successfully in practice. Unfortunately this is often not the case since the covariance

of a single treaty with the whole portfolio cannot be determined. For this reason

the correlation is often disregarded in practice and attention is only given to the

fluctuation of the individual treaty. This provides the following principles:

1. The variance principle

Mi =
G∑

j V ar[Sj ]
· V ar[Si] (4.10)
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In the case of uncorrelated risks this of course corresponds to the covariance

principle .

2. The standard deviation principle

Mi =
G∑

j σ(Sj)
· σ(Si) (4.11)

3. The root rate on-line principle

This principle is particularly common for excess of loss in property but can in

principle also be applied to all RI covers with finite maximum liability H. In

the case of excess of loss, H is precisely the cover which we previously called

with C. The so-called risk rate on-line of treaty i is defined by

ri =
E[Si]
Hi

(4.12)

and the loading concept now reads

Mi =
G∑

j Hj
√
rj
·Hi ·

√
ri (4.13)

Note: If only total losses are possible, ie

Si = Ni ·Hi

and the number of losses Ni is Poisson distributed, then:

σ(Si) = Hi

√
E[Ni]

= Hi ·
√
ri

In this way the amount Hi ·
√
ri is also a measure of fluctuation corresponding

to the standard deviation given the above conditions.

For all of the above principles the problem arises in practice that at the time of

rating the reinsurer does not know his future portfolio and thus has to estimate the

relevant parameters on the basis of the current or planned portfolio. Depending on

the principle applied, he thus determines a coefficient α, so that
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Mi = α1 · V ar[Si] or (4.14)

Mi = α2 · σ(Si) or (4.15)

Mi = α3 ·Hi ·
√
ri (4.16)

These principles, whilst convenient in practice, result in a few problems from a the-

oretical point of view. One of these is that in dividing the cover into part coverages

they are generally non-additive. In order to illustrate this we consider an excess of

loss C xs D. If we divide this layer into two sublayers C1 xs D1 and C2 xs D2, so

that

D1 + C1 = D2

C1 + C2 = C

then S1 =
∑N

j=1 LD1 ,C1(Xj) and S2 =
∑N

j=1 LD2 ,C2(Xj) are of course positively

correlated and thus

V ar[S] > V ar[S1] + V ar[S2]

Using the variance principle for the margins this means:

M > M1 +M2

In this way a treaty would become increasingly cheaper on being divided up into

part treaties. Similarly this problem occurs with the other two principles. The

covariance principle is by contrast additive and thus in this way also satisfactory.

However, no simplification is possible for the formulae (4.14 - 4.16) which makes

implementation even more difficult.

In order to alleviate the problem of lacking additivity, the so-called infinitesimal

ROL principle was introduced. The idea is to divide the cover H into infinitesimal

part coverages dh and then to integrate the loading for these part coverages. Due

to

r =
1
dh

∫ d+dh

d
1− FS(s) ds
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then for an infinitesimal cover dh attaching at the deductible d

r = 1− FS(d)

applies and according to (4.16) the appropriate loading is equal to

m = α · dh
√

1− FS(d)

For the total loading this gives

M = α

∫ d+H

d

√
1− FS(x) dx (4.17)

and this loading principle is clearly additive.

4.3.2 The loading on-line concept for Cat-XL treaties (according

to Bernegger, 1994)

We will now deal with one example where the covariance principle can be successfully

implemented in practical terms. The example involves margins for Cat-XL treaties.

As a reminder: Cat-XL treaties are excess of loss treaties where the basic original

loss comprises the total of all losses in a direct insurer’s portfolio arising from one

natural disaster (wind storm, earthquake, flood, hail).

We now consider a certain natural hazard potential (eg earthquakes in Japan)

and assume that the appropriate RAC - and thus the global target for returns -

has already been determined for the reinsurer’s entire NP portfolio relating to this

potential. By NP portfolio we mean the total of all Cat-XL treaties:

C1 xs D1, . . . , Cl xs Dl

These treaties relate to the portfolios of various direct insurance companies, whereby

the risks are all located in the same geographical area and exposed to the relevant

natural hazard. Individual layers may of course overlap. We now want to determine

the covariance of an individual Cat-XL layer using the reinsurer’s whole portfolio.

For this purpose we need to establish a relation between the loss in the layer and the

aggregate loss of the portfolio (we assume the distribution of the latter to be known
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since major reinsurers have good natural hazard models at their disposal and can

determine the loss distribution of their portfolios quite accurately).

First of all we intend to create an approximation for the relation between the

loss in a layer and the aggregate loss of the portfolio. For this we first standardize

all values (covers, deductibles and losses) with the portfolio’s whole cover (=
∑
Ci)

and assume that the individual covers Ci are small compared to the whole coverage.

We represent the standardized covers as δi and in accordance with our assumption

δi � 1. For the other variables we retain the old notation. For small covers the

probability P [LDi,δi(Xi) > 0] can be approximated using the quotients of the ROL

and the expected number of losses, since for ROL ri the following applies:

ri = E[N ] · 1
δi

∫ D+δi

D
1− FXi(s) ds

and due to

lim
δi→0

1
δi

∫ D+δi

D
1− FXi(s) ds = 1− FXi(D) = P [LDi,δi(Xi) > 0]

we have on account of δi � 1, the approximation

P [LDi,δi(Xi) > 0] ≈ ri
λ

(4.18)

where λ := E[N ]. It should be noted that Xi represents the original loss (arising from

an event) to the risks covered below the layer i . The individual Xi are naturally

correlated and we would now like to provide a simple model of this correlation. We

use Z to represent the aggregate loss for the portfolio arising from one event, ie

Z =
∑
i

LDi,δi(Xi) :=
∑
i

Yi

We now make the following assumption: There exists a decreasing function ξ :

R+ → R+, so that :

Yi = (Z − ξ(ri))+ − (Z − ξ(ri)− δi)+ (4.19)

applies.

This then means that a loss occurs in layer i at the very moment when the total

loss for the portfolio exceeds ξ(ri). This assumption further implies that if a layer is
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affected by a loss event then this applies to every other layer with a higher rate on

line. The function ξ can be identified using the approximation (4.18), since

1− FZ(ξ(r)) = P [Z > ξ(r)] = P [Y > 0] =
r

λ

and thus

ξ(r) = F−1
Z (1− r/λ)

We are now in a position to calculate the covariance of the aggregate annual loss

with the aggregate annual loss in the layer. For the sake of simplicity we will assume

that the number of events is Poisson distributed. In this case the covariance we are

seeking is equal to

λ · E[Z · Yi]

We now have:

E[Z · Y ] =
∫ ξ+δ

ξ
z(z − ξ) dFZ(z) +

∫ ∞
ξ+δ

z · δ dFZ(z) (4.20)

For the sake of simpler notation we have left out the index i and have written ξ

instead of ξ(r). Developing the above formula (4.20) with respect to δ now provides:

E[Z · Y ] = δ

(
ξ(1− FZ(ξ)) +

∫ ∞
ξ

(1− FZ(z)) dz
)

+O(δ2) (4.21)

We can now write the formula for loading: If M is the given total margin for the

portfolio then the margin

M · λ E[Z · Y ]
λ E[Z2]

= M · E[Z · Y ]
E[Z2]

must be requested for the layer under consideration. For the loading on line for a

layer with ROL r with (4.21) we obtain after disregarding the terms O(δ2) :

LOL(r) =
M

E[Z2]
(ξ(r)(1− FZ(ξ(r))) + sltZ(ξ(r)))

=
M

E[Z2]
(
F−1
Z (1− r/λ) · r/λ+ sltZ(F−1

Z (1− r/λ))
)

(4.22)

We would now like to summarize the considerations just made in a theorem:
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Theorem 7 (Bernegger, 1994)

Let C1 xs D1, . . . , Cl xs Dl represent the amount of all of a reinsurer’s Cat-XL

treaties relating to a given natural hazard potential. The number of the corresponding

events is Poisson(λ) distributed. For a covariance between the loss in a layer i with

Ci �
∑

j Cj and the aggregate reinsured loss Z the following applies

Cov[Si, Z] ≈ λ · Ci ·
(
F−1
Z (1− ri/λ) · ri/λ+ sltZ(F−1

Z (1− ri/λ))
)

where ri = E[Si]
Ci

represents the associated ROL. For calculating a global target return

on margins for the individual treaties, this provides the formula (4.22) for the loading

on line.

4.3.3 The dependency of loading on the reinsurer’s share

So far we have been neglecting an important factor in our considerations: a reinsurer

seldom underwrites a treaty alone but instead generally only receives a share a ≤ 1 of

the treaty. This means that every reinsurer involved in the treaty has a proportional

amount of responsibility for loss payments and receives a corresponding share of the

total premium. The total premium is negotiated between the direct insurer and the

reinsurer with the largest share (the so-called leading reinsurer).

If ai then represents the share of the reinsurer in consideration as part of the

treaty i and Si signifies the treaty’s reinsured loss, then the total loss for the rein-

surer’s portfolio is equal to

S =
∑

all treaties i

aiSi

As a result of this, using the variance or covariance principle the premium does not

depend on the share in a linear manner and therefore the treaty’s total premium in

particular depends on the share of the leading reinsurer. In the case of the variance

principle we need to modify the loading formula (4.14) as follows:

Mi = α · a2
i · V ar[Si] (4.23)

here Mi is the loading which the leading reinsurer with share ai needs for himself

and the total premium for the treaty is thus equal to

Mi

ai
= α · ai · V ar[Si]
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ie the cost of the treaty depends on the share of the leading reinsurer.

In practice the situation often arises where the leading reinsurer’s rating is al-

ready available and the other reinsurers then have to decide which share of the

treaty they wish to underwrite. The reinsurer’s underwriters then have to solve the

following task:

Given: P , the premium for 100% of the treaty

α, the loading factor for the variance loading

K, the reinsurer’s costs

Sought: a, the optimal share

Furthermore, we assume that the loading principle is based on the variance

principle. This provides the following condition

a · E[S] + α · a2 · V ar[S] +K ≤ a · P

a2(α · V ar[S]) + a(E[S]− P ) +K ≤ 0 (4.24)

It should be noted that the costs do not depend on the underwritten share.

Discussion:

• If there is no real solution to the inequality (4.24), this means that participation

in business is not acceptable for this reinsurer.

• If for there are two real solutions a1 ≤ a2 which make the left hand side of

(4.24) equal to zero:

a1,2 =
P − E[S]±

√
(P − E[S])2 − 4K · α · V ar[S]

2α · V ar[S]

which are then automatically positive due to the above formula (except if

P < E[S], but then the reinsurer should keep well away from this treaty

anyway), then every share a1 ≤ a ≤ a2 is acceptable for the reinsurer. The

optimal share is a2, since at that point the expected profit is greatest.

• The factor α and the costs K vary for different insurers and consequently so

do the optimal shares.
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